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J.  Phys. A: Math, Gen., Vol. 11, No. 7, 1978. Printed in Great Britain 

Lattice Coulomb gas representations of two-dimensional 
problems? 

Leo P Kadanoff $ 
Department of Physics and Materials Research Laboratory, Brown Universiiy, Pro- 
vidence, Rhode Island 02912, USA 

Received 27 September 1977, in final form 23 February 1978 

Abstract. Many of the standard two-dimensional problems of statistical physics can be 
transformed into ‘Coulomb gas’ problems in which there are two kinds of ‘charges’ 
represented by integers n and m. Such a transformation works for the king model, the 
three- and four-state Potts models, the Ashkin-Teller model, and many others. In general 
the n-n and m-m interactions have the Coulombic character in which the interaction is, 
for large separations, proportional to the logarithm of the distance. On the other hand, the 
n(r) -m(R)  interaction is for large distances proportional to i times the angle @ ( r - R )  
which measures the angular position of R relative to r. This latter interaction is akin to 
that between a magnetic monopole and an electric charge. 

1. Introduction 

1.1. Goals 

In this paper, we shall reformulate many of the standard problems of statistical physcis 
in terms of a pair of integer variables n ( r )  and m ( R )  which describe respectively 
quantum numbers for ‘charges’ and ‘magnetic monopoles’ confined to lattice sites r 
and R. In the recent literature there have appeared several formulations in which a 
single set of charges n ( r )  interact via Coulomb-like potentials. (See, for example, 
Anderson and Yuval (1969), Kosterlitz and Thouless (1973), Kosterlitz (1974), and 
also the review of Kosterlitz and Thouless (1977).) However, in a recent publication 
Jose et a1 (1977) have stressed the usefulness of having two kinds of quantum 
numbers. (This approach was also apparently derived independently by Villain, whose 
work was described to me by Kosterlitz. For parallel discussions of the two- 
dimensional case and extension to higher dimensionality see Banks et a1 (1977) and 
Savit (1977)) These appear in an action (minus the Hamiltonian divided by kT) 
which takes the form 

1 
A [ n ,  m l = C  Y ( n ( r ) ) + C  Y(m(R))+Ao+-C n(r)Vn,n(r, r’)n(r‘)  

r R 2,  

+’ 1 m(R)Vm,m(R, R‘)m(R’)+  m(R)Vm,n(R, r>n(r)  (1.1) 
2 R,R’ r, R 
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when 

1 n(r)=O 1 m(R) = 0. 
r R 

Thus, the action (1.1) applies to the case in which the total electric and magnetic 
charges vanish. When they do not, the action is minus infinity. The statistical 
mechanics problem of calculating the partition function is then equivalent to doing the 
sum 

(1.3) z= 1 eA[n,ml 

with the sums restricted by the conditions (1.2). 
The special character of the formulation (1.1) lies in the long-ranged nature of the 

interactions V.  For large separations V,,,(r, r’) and Vm,m(r, r’)  are each proportional 
to In Ir-r’l. This is, of course, the usual form of Coulomb interactions in two 
dimensions. The ‘electric’-‘magnetic’ interaction Vm,, (r, r ’ )  also has a long-ranged 
character. For large separations, it is proportional to @(r- r ’ ) ,  where 0 is the usual 
angular variable defined by 

{n(rN ( m ( R #  

Y - Y ’  tan @(r - r’)  = - 
x - X I ’  

As we will see in § 3 a large collection of the standard problems in two-dimen- 
sional statistical physics can be phrased in this manner, in which the difference 
between the problems are mostly reflected in changes in the parameters in the 
interactions, V.  This unification is one of the advantages of the Coulombic formula- 
tion. Another advantage lies in the simplicity of the duality transformation (Kramers 
and Wannier 1941) in this language. The Kramers-Wannier duality is simply the 
replacement of n by m. If Vm,m = V,,,, the problem is self-dual. As we shall see, 
many of the standard duality statements are made self-evident in this formulation. 

There is an additional possible advantage of this formulation. In the usual hand- 
ling of critical phenomena, long-ranged correlations are built up from short-ranged 
interactions. The interactions in (1.1) are, from the outset, long-ranged. Hence, one 
might be able to gain an insight into the nature of the long-ranged correlations via the 
action (1.1). 

1.2. Methodology 

Equations ( l . lb(1.3)  define a description of our statistical mechanics problem which 
is, in some sense, analogous to a two-dimensional electrodynamics with charges and 
magnetic monopoles. We shall henceforth call this the ‘electrodynamic’ description of 
the problem. Our job is to connect this electrodynamic description to a ‘standard’ or 
Ising description of the very same problem. In this latter representation, the basic 
statistical variables are called m(r), which take on some pre-assigned set of values-for 
example m(r)= f 1. Then the action includes a contribution from all the sites: 

~ s i t e [ c + I  = C h(m(r)) 
r 

and a set of interactions from nearest-neighbour bonds: 

(1.5a) 
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The partition function is then, of course, just the sum over all possible values of U of 
the form 

We wish to show how the very same partition function can be equivalently 
represented in the forms (1.3) and (1.4). To do this we go through an intermediate 
‘gauge-theoretical’ representation of this problem. (References on ‘gauge theory’ 
models in statistical mechanics include Wegner (1971), Balian et a1 (1974, 1975a, b), 
Migdal (1975a, b), and Kadanoff (1977a, b). This third representation includes a set 
of variables and interactions defined on sites, on bonds, and on plaquettes. Each site 
contains a variable e ( r )  which can range from - 7 ~  to v and a variable n(r)  which 
takes on integral values. The interaction on each site is of the form: 

( 1 . 7 ~ )  

Each nearest-neighbour bond contains a variable l(r ,  r ’ )  = - 1(r’, r )  which takes on 
integral values. The interaction on the bond takes the form 

A,ite[n, 01 = C Y(n(r))+ie(r) . n(r). 
r 

Finally, each square on the lattice forms a plaquette bounded by four bonds (see figure 
1). On each plaquette we define a variable m (R) ,  R being the centre of the plaquette, 
which is essentially the circulation of the 1 ’s  around the plaquette. That definition 
makes m ( R )  an integer variable. The plaquette interaction is given by 

In some cases we shall wish m, n, 1 and 8 to have M components, hence the dots in 
equations ( 1 . 7 ~ )  and (1.76) which indicate scalar products. In this situation the 
interaction constant will be an M X M matrix. 

Our third description of the partition function will then be one in which 2 is a sum 
over n, m, 1 and an integral over 8, i.e. 

2 1 

I I I l 
e- .-----e------. 

- Type-I bonds 
1 Type- I I  bonds 

Figure 1. The square lattice. The full circles represent lattice sites, r ;  the crosses indicate 
sites of the dual lattice, R. The definition of the plaquette variable shown is m ( R ) =  
[I* + l23 + 134 + 141. 



1402 L P Kadanof 

Here the total action is, of course, 

A[n, 8, m, 11 =Asite[n, 81 +Abond[4 11 +Apiaquette[m, II (1.9) 

we call this third formulation of the action a gauge-theoretical one because 
A[n, 8, m, I ]  has an invariance under the replacement 

e ( r )+  O ( r ) + 2 ~ q ( r )  

l(r ,  r ‘ )+ l(r, r ’ )+q( r ) -q ( r ’ )  
(1.10) 

for any set of integers q(r) .  
We shall generate both the ‘standard’ description of the problem and the elec- 

trodynamic description by doing partial summations on the gauge-theoretical formu- 
lation. In particular, we shall show that the sum over the 1 ’s  and the 8’s yields an 
action of the form (1-l) ,  i.e. 

(1.11) 

This correspondence between the electrodynamic and the gauge-theoretical formula- 
tions is developed in § 3. 

The connection with the standard formulation of the problem is developed in § 2. 
Finally, in 9 4 all the results are brought together and summarised. 

2. Connections with standard problems 

In this section, we reduce the gauge-theoretic formulation of our statistical mechanics 
problem to the standard formulation, which involves variables cr(r) and nearest- 
neighbour interactions. 

2.1. Elimination of m ( R )  and 1 (r, r ‘ )  

The first step in this reduction is to sum expression (1.8) over the variables m ( R )  and 
1 (r, r’) .  If one makes the specific choice 

P ( m )  = 0 (2.1) 

this sum is very simple indeed. We then find that 

The sums over 1’s on different bonds are then independent of one another. We find 
that each bond has a coupling of the Villain (1975) form: 

We wish to use equation (2.3) in three cases. In the first case the bonds are the usual 
nearest-neighbour bonds of the square lattice and 8, I ,  and X are just simple real 
numbers. In the second case, we still have the same bond structure but 8 and 1 are 
each vectors with M components while X is a symmetrical M X M  matrix. Then, 
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equation (2.3) will become 

The Ashkin-Teller model (Ashkin and Teller 1943) can be represented by a situation 
in which M = 2. Then xjk is a 2 X 2 matrix which we write as 

x = ( x l  xo x1 x , ) = x o + x l T l .  

Yet another two-component case arises when e ( r )  has two components which 
appear on two different sublattices, each of which is a simple square lattice (see figure 
2). We denote one sublattice by giving it the lattice sites r and the other by giving it 
the site names R. Then the basic coupling term indicated in figure 2 is K ( & ( r ) -  &(r’),  
&(R) - ez(R’)) where the coupling function is identical to that given in equations 
(2.4) and (2.5). This is then the coupling structure appropriate for the eight-vertex 
model. (For references on the Ashkin-Teller and the eight-vertex models see Baxter 
(1971, 1972), Barber and Baxter (1973), Wegner (1972), Fan (1972), Fan and Wu 
(1970), Knops (1975), Wu (1977), Wu and Lin (1974), and Kadanoff and Wegner 
(197 l ) . )  

Now we have bond structures entirely similar to those of the standard problems. 

+ Type- I  bonds 

+ Type-I I  bonds 

Figure 2. The lattice used for the eight-vertex model. The full circles represent lattice 
sites, r ;  the crosses indicate sites of the dual lattice, R. 

2.2. Going from n ( r )  and e ( r )  to u ( r )  

In the gauge-theoretical formulation, we have at each site a summation over n ( r )  and 
an integration over e ( r )  of the form: 

Here f ( 0 )  is some very complicated function determined by the integrations over all 
other variables. 
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We wish to reduce this integration to a discrete summation over some set of values 
of e ( r ) ,  i.e. 

2T 
P 

e ( r )  = u(r ) - -  T (2.7) 

with 

u ( r ) =  1 , 2 , .  . . , p .  

This goal is easily accomplished with the aid of the Poisson sum formula which states 

Then simply choose 

ey(")= 'f exp[ -in(=-..) + h ( u ) ]  
IT= 1 P 

and the expression (2.6) reduces to 

(2.9) 

(2.10) 

(2.1 1) 

Here h ( u ( r ) )  is the site weight function of equation ( 1 . 5 ~ ) .  
In short, we have succeeded in converting the 8 integrals to discrete sums and the 

bond interactions to simple nearest-neighbour couplings. In gross, the gauge problem 
has been reduced to the standard problem. 

2.3. Examples 

2.3. I .  The Zsing model. For the Ising case U = 1 , 2 .  Let h ( U )  = + h if U = 2 and - h if 
U = 1.  Then 

2 cosh h 
-2 sinh h 

for n even 
for n odd. 

= 

If the magnetic field, h, is zero, then 

for n even 
ey("'={', for n odd. 

The bond interaction is 

( 2 . 1 2 ~ )  

(2.126) 

The standard way of writing this interaction is to take it to be exp(K,,* K 1 )  depending 
upon whether U is equal or unequal to U'.  Then 

(2.13) 
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2.3.2. The p-state model The p-state (planar Potts) model is obtained with unit 
vertex weight if we choose 

if n / p  = an integer 
otherwise. 

(2.14) 

Then 6 takes on the values (2.8) and the vertex function h ( a )  vanishes. In this case, 
the coupling on each bond takes the form 

(2.15) 

For p = 3 the coupling (2.15) is a representation of the three-state Potts model. For 
p = 4 and above, we have special cases of the planar Potts models. 

2.3.3. Ashkin-Teller model. For the Ashkin-Teller model there are two variables 
u1 = 1, 2 and u2 = 1, 2 at each site. Accordingly we require a two-component 8 
variable and a two-component n variable. In order to achieve a vanishing on site 
interaction, we choose: 

if nl and n2 are even 
otherwise. 

(2.16) 

The inclusion of odd-n terms with a Y chosen to that Y ( n l ,  112) is periodic under 
n l  + n1 + 2 and/or n2 + n2 + 2 will generate magnetic field terms coupled to al, u2, and 
(+1(+2. 

The standard Ashkin-Teller interaction can be generated via equations (2.4) and 
(2.5), which yield a coupling structure 

e x p ( K ( m - d ,  U, -U; ) )  

11 +(u.2-a;-12)2 xo I = exp( -T[(-- u1-a; ) 2 

- 2 ( F  - 11) (2- r2)x1). 

11.12 2 

a 1 - U ;  U 2  - 0; 
(2.17) 

The usual way of representing this coupling structure is to make use of the variables 

s=  1-(u1-u;)2/2 T = 1 - ( U 2  - U;)2/2 (2.18) 

which take on the values il. Then the coupling is written 

eXp[& + K1 ( s  + 7 )  + K3ST]  

(2.19) 

Clearly X ,  represents a coupling within the set of variables u1 and within the set a2 
while XI represent a a1-a2 coupling. 

Notice that the coupling (2.19) is unchanged under a change in sign of X I .  (To see 
this replace 12 by - 12 + (1 - ~ ) / 2 . )  
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2.3.4. The eight-vertex model. The spin formulation of the eight-vertex model 
(Kadanoff and Wegner 1971, Fan and Wu 1970) is exactly the same as that of the 
Ashkin-Teller model except that the variables ul, el, nl and U Z ,  8 2 ,  n2 appear on 
different sublattices. On each site, therefore, there is one n variable, one 8 and one (+. 
If the magnetic field terms are zero, Y ( n )  takes the form (2.12b). Equations (2.17) 
and (2.18) apply equally well to the eight-vertex model and the Ashkin-Teller model. 
However the standard notation for equation (2.19) is slightly different in that the 
left-hand side of this equation is often written 

e x p [ K o + K ( S + ~ ) + A S ~ ] .  (2.20) 

(See Kadanoff and Wegner (1971).) 

2.4. Duality statements 

All the models mentioned here obey duality relations which take a simple form when 
the on-site fields, h, vanish. The duality statements are essentially that the partition 
functions of the models in question are left unchanged when the couplings are 
replaced by the coefficients in their Fourier series expansions. To be specific, equation 
(2.4) can be written in terms of the variables (2.8) as 

This equation has a Fourier series representation: 

(2.22) 

The duality statement is that the partition function for the problem with couplings 
K ( u )  and that with couplings R(u) are identical. 

Now calculate I?((+). By inverting the Fourier transform we find 

Now the sum over 1 and the sum over U can be combined into a single sum over a new 
variable k = U - pl to give 

But the Poisson sum formula implies that 

f f (k)=  dk f e2"i'kf(k). 
k=-m -m I=-m 

Thence, after a bit more calculation we find that 
M / 2  M / 2  

eK(p)=(2T) f exp[ -4f-l) . p 2 X - ' .  ("I)]. (2.23) 
(det X)'/* I = - ~  P 
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Expression (2.23) for is very similar indeed to expression (2.21) for K. Except 
for a change in prefactors, the coupling is exactly of the same form with X replaced 
according to 

(2.24) x + 2 = p*x-1. 

For the Ising model, p = 2 and the duality transform is 

x + 2 = 4 / x .  (2 .25 )  

The model is self-dual at X = 2. This self-duality point is, in fact, the critical point of 
the Ising model! 

For the Ashkin-Teller and Baxter models the duality statement is, once again, 
equation (2.25) but now X and 2 are 2 x 2 matrices. If we represent X as before, in 
the form (2.5), then 

The model will be self-dual if 

xi-x: = 4. 

(2.26) 

(2.27) 

This is indeed a simple statement of the duality conditions for the Ashkin-Teller and 
the eight-vertex models. 

3. To the electrodynamic representation 

3.1. From gauge theory to a Gaussian integral 

This section is directed toward the derivation of the electrodynamic representation of 
our problem starting from the gauge-theoretical representation. In particular, we 
seek to calculate 

z [ n ,  m ]  =(n I m  ?I)( x,) exP(A,ite[e, n]+Abond[e, 1]+Aplaquette[l, m ] ) .  
r - m  7T ( r , r )  l ( r , r )  

(3.1) 
We would like to prove that Z [ n ,  m] is the exponential of the action described in 
equations (1.1). Since the terms Y ( n ( r ) )  and P ( m ( R ) )  move through the sums and 
integrals in equation (3.1) quite without change, we can simplify our notation by 
simply ignoring these terms. 

To evaluate the sums and integrals in equation (3.1), we shall make use of the 
gauge invariance of the theory, which is the statement that the integrand is invariant 
under the transformations (1 .lo): 

e ( r ) +  8( r )+2rq ( r )=  2 ~ 4 ( r )  

l(r ,  r ’ ) +  l(r, r ‘ ) + q ( r ) - q ( r ’ ) =  l’(r, r ’ )  (3.2) 

where the 4’s  are integers. Notice that our lattice shown in figure 1 can each be 
decomposed into two types of bonds. On the type-I bonds choose 4 ( r )  so that f ’ (r ,  r ’ )  
vanishes. Then rewrite the sum (3.1) in terms of the #J’S and the If’s, which still exist 
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on the type-I1 bonds. The result is 

bonds 

bonds 

Notice how the integrand in equation (3.3) does not depend upon e ( r )  or q ( r )  
separately but only upon the combination 4 = 8/2-r + q. Thence we can convert the 
integral into Gaussian form by making the replacement 

If there are N sites on the r lattice equation (3.3) contains N summations over I‘ 
and N delta symbols which define / ‘ (r ,  r ’ )  in terms of the m ( R ) .  Thus one can solve 
for the Z’s in terms of the m’s in the form 

(3.5) 

Here 61 is a unit vector in the x direction and r lies just above r‘.  
At this point, equation (3.3) reduces to just a Gaussian integral: 

where 

bonds 

bonds 

(3.6) 
Such a Gaussian integral can of course be evaluated immediately. In general the 

evaluation of a Gaussian integral is given by 

where G is the matrix inverse of G-’, Expression (3.6) has a form very similar to that 
of (3.7), except that there are extra quadratic terms in Z[m]. i-lence we conclude that 
the result of doing the integral is that In Z [ n ,  m ]  takes the form of a constant plus a 
quadratic form in n and m. In this way, we see that expression (1.1) is indeed justified. 
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Next we must turn to evaluating the parameters Ao, V,,,, V,,,, V,,, and Vm,n in that 
expression. 

3.2. The Green function 

Expression (3.6) has the 4’s coupled together by an inverse Green function of the 
form 

Gjkl (r,  r r ) =  2nX,*(4Sr3r’-C e Sr.r,+i) (3.8) 

where the e* are the nearest-neighbour vectors on the lattice. Fourier transformation 
enables us to calculate the Green function immediately. We write the result as 

(3.9) 
1 

G(r, r ’ ) =  G(0, 0 ) - 7  X - ’ V R ( ~ ,  r ’ ) .  
(257) 

Here G(0,O) is the infinite constant 

1 

while V(r, r ’ )  is the finite quantity 

Notice that for large separations, Ir - r’l, 

vR(r, r ’ )+  In Ir -r’l ,  

(3.10) 

(3.11) 

(3.12) 

In our later analysis, we shall need another function VI(R, r )  to describe the n-m 
couplings, Here R is a site on the dual lattice and VI is defined in terms of VR (r, r r )  = 
vR(x - X I ,  Y - y ’ >  by 

00 
1 V,(R-r)= lim 1 C ~ ( V R ( X - X - ; - ~ ,  Y - ; - Y ) -  VR(X-x-z-j,  Y+;-Y) )  

c+O+ j = o  

(3.13) 
eiq ( R - r )  (- 2i) sin(q,/2) * dq, 71 

% I-,, dqy 4 - 2 cos qx - 2 cos q, e-‘ eiq=/* - 
’ = lim 

e-0+ 

The form of VI(R - r )  is relatively simple. For large values of the separation R - r we 
have 

(3.14) 

This expression is true except when r lies on the negative x axis. On that axis VI has a 
discontinuity of strength 257. Furthermore, VI(r) changes sign when y + - y. All these 
properties together imply that - VI(r) is, for large r, just the angle @ ( r )  which obeys 

tan @ ( r )  = y / x  (3.15) 

with the conditions that @ ( r ) +  0 as y + 0 when x is positive and that @(r)  jumps from 
57 to - 57 as y passes through zero from above with x negative. So in the asymptotic 
limit 

(3.16) VI(R - r ) +  - @(R - r ) .  
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Actually this asymptotic form even holds quite well for small values of R - r .  
When r = (i, i), (-i, i), (-i, -i), (4, -$), VI(r) equals respectively - ~ / 4 ,  -377/4, 
3 ~ / 4 ,  and ~/4--just as one would get from the asymptotic expression. 

3.3. Coupling terms 

With this Green function evaluated, one can start doing the integral (3.6). When all 
the m’s are zero, one finds by applying (3.9) that 

(3.17) 

The first term in equation (3.17) is the constant term A.  in equation (1.1). Since 
Gik(O, 0 )  = CO, the second term reduces Z [ n ,  m ]  to zero unless the first of conditions 
(1.2), i.e. 

C nj(r)=O, 
r 

is satisfied. The third term in equation (3.17) establishes the value of Vn,n (r,  r’)  to be 

(3.18) 

The next step is to consider the terms bilinear in n and 1 which emerge from 

v n , n  (r, r ’ )  = (X-’)jk vR(r - r‘) .  

equation (3.8). These terms in In Z [ n ,  m] are 

2 1 m ( R ) .  v m , n ( R ,  r ) .  n ( r )  
R.r  

A substitution of the expression for I in terms of m (equation (3.6)) immediately gives 
an evaluation of the next coupling term as 

(3.19) 

The final term in In Z [ n ,  m ]  is bilinear in I(r, r‘) and hence bilinear in m(r, r’) ,  This 

Vm,,(R, r )  = iSj,k VI(R - r ) .  

term has the form 

-77 1 I(r, r ‘ )  . X .  I(r, r’)+1 1 1 I(r1, r i ) .  X. (2771~ 
( r , r ’ )  h. r i )  (12 .  r i )  

X [ G h ,  r2)+ G(rL 4)-  G(r1, 4)-  G(r2, ri)] . l(r2, r i ) .  (3.20) 

Here the sums are over type-I1 bonds. This term may be rewritten as a sum over m’s 
in the form 

(3.21) - 1 1 m (R) . F(F, R’)m (R’) 
R,R’ 

with 

F ( R , R ’ ) = ~ T ~ ~ ~ , , R - R , . ~ ~ ( R - R ’ ) . ~ ^ ~ ~ - ( ~ T ) ~  1 1 x . {  } . x  ( 3 . 2 2 ~ )  
m o o  

I=O r=o 
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and 

{ } =  (~(~'G(R-Ile^l-4(e*1+~P;?), R' = 1'21 -;(el + v ' P 2 ) ) .  (3.22b) 

But notice that F(R,  R') obeys 

m = * l  "=*l 

4F(F, r ' ) - x F ( R + e * ,  R')=SR,R'2.nX. 
ê  

Therefore F(R,  R' )  is X .  G(R,  R ' ) .  X ,  where G is the Green function which we 
defined in equation (3.10).  

In summary, this final term in In Z [ n ,  m ]  is 

InZ[O, m ] = .  . .-4 m ( R ) ,  X .  G ( R , R ' ) . X .  m(R' ) .  ( 3 . 2 3 )  
R,R' 

Without any further work we can conclude that Z [ n ,  m ]  vanishes unless 

c m k w )  = 0 (3.24) 
R 

and that 

Vm,m (R, R ' )  = Xjk VR(R - R'). 

Thus all terms in equation (1.1) have been evaluated. 

( 3 . 2 5 )  

3.4. Another lattice 

To show how the eight-vertex model fits into this picture, we make use of the two 
interpenetrating square lattices shown in figure 2 .  Each lattice site of the first lattice, 
labeled by r, contains variables Ol(r), n l ( r )  and m2(r) .  The other lattice has sites 
labelled by R and has on each site variables &(R), n z ( R )  and m l ( R ) .  Notice that 
there are two types of bonds indicated in figure 2 .  Both bonds have a coupling 
structure 

-.n*. x * * (3.26) 

where X is a 2 X 2 matrix given by equation ( 2 . 5 ) .  For the type-I1 bond, 

On the other hand, for the type-I bond, we choose 

(3.27a) 

(3.276) 

Here, and 22 are unit vectors in the x and y directions respectively. 
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Now we are ready to repeat the calculation which led from equation (3.1) to 
equation (3.25). Start by choosing a gauge in which Zl(r, r’)  vanishes on type-I1 and 
f2(r, r ’ )  vanisha on type-I bonds. Then, for both types of bonds, in this gauge, 

Rewrite equation (3.6) for this new case. Denote by s a position variable which can 
take on either r -  or R-values. Let, for example, n(s) be nl(r)  when s is on the first 
sublattice and nZ(R) when s is on the second. With this convention 

Z[n ,  m] = n J de(s) eQ0+O1 
S 

- 42(r  + 462 -421))l + 2rr 1 /2(R + 62, R )  

x [Xo(42(R + 6 2 ) -  42(R)) + X(41 (R + 481 + $22)- d1 (R + 462 -461 )>I. 

(3.29) 
R 

Repeat the previous analysis. Then one finds, once more, a coupling with a structure 
given by equations (1.1) with terms 

an n-n coupling 

Vn,n(S, s’) = 6j,kX01 VR(S -s’) 

an m-m coupling 

(3.30) 

(3.3 1) 

and an n-m coupling 

(3.32) 

4. Representations for specific systems 

In this section, we summarise the results of the previous sections by describing how 
the electrodynamic representations work out for the standard problems described in 
§ 2. 
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4.1. The p -state case 

Let a ( r )  take on integer values between 1 and p as described in equation ( 2 . 8 a ) .  Let 
the coupling between nearest-neighbour U ’ S  be that described by equation (2 .15) .  
Take the vertex function h ( a )  to be zero so that there is no breaking of the symmetry 
under the displacement of a ( r )  by an integer, q, i.e. 

a ( r ) +  a ( r ) + q .  

According to equation (2 .14 )  this latter condition forces n ( r )  to be p times an integer. 
For this reason we define variables which take on all integer values: 

N ( r )  = n ( r > / p  M ( R )  = m ( R )  (4 .1 )  

and say that the p-state model has a partition function which is given by equations 
(1 .l’j-(L.3), i.e. a sum over all integral values of N and M :  

with 

A [ N , M ] =  -00, if 1 N ( ~ ) Z O  or C M ( R ) # O  
r R 

and, otherwise, 

A [ N ,  M ]  = V [ N ,  MI +A, .  

In this case 

( 4 . 2 a )  

(4 .2b )  

( 4 . 2 ~ )  

(4 .3 )  

In equation (2 .24) ,  we mentioned that the p-state model had a dual symmetry in 
which the partition function had a very simple transformation under the replacement 
of the coupling X by 2 = p 2 / X .  This symmetry is manifestly demonstrated in equa- 
tion (4 .3 )  as a symmetry of the entire problem under 

N - M  x * p /x. ( 4 . 4 )  
Therefore if the partition function has a singularity at some value of X ,  say X,,  then it 
also has a singularity at 

2, = p2/x,. 

x=x*=p.  (4.5) 

For p = 2 and 3 ,  there is but one singularity at the self-dual point for which X ,  = 2, or 

4.2. Ashkin-Teller and eight-vertex models 

For the Ashkin-Teller model, n and m have two components and p = 2 .  Thus, we 
define N ( r )  and M ( R )  by 

Nk<r)=  nk(r ) /2  Mk(R)= m k w ) .  ( 4 . 6 )  
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Here X is a 2 x 2 matrix of the form 

x = xo + x171 
so that, in this case, instead of equation (4.3), we find 

(4.7) +$ 2 M ( R ) .  V R ( R - R ’ ) ( X ~ + X ~ T ~ ) .  M ( R ’ ) .  
RR’ 

The duality transformation for this problem is 

N ; ? ( r ) o  -M2(R> 

XI *4X1/(X: -x:>. (4.8) 
N1 ( r )  @=Ml(R)  

xo e 4 X O / ( X ~  - x:) 

For real values of X1 in the region X: <Xi  the problem has a critical line in which 
the behaviour is a function of Xl. This line occurs at critical values defined by 

(X$ - (XT)2 = 4. (4.9) 

We can then parametrise the critical line by writing 

X ~ = ~ C O S ~ U  Xl = 2 sinh U (4.10) 

so that on the critical line, V[N, MI takes the form 

V[N, M ]  = ~ ( r )  . vR(r - r’)  . ~ ( r ’ ) +  2i ~ ( r )  , ~ l ( r  - R ) M ( R )  
r,r’ r,R 

+ M ( R )  euT1 VR(R -R’)M(R’) .  
R,R’ 

(4.11) 

A rather similar scheme holds for the eight-vertex model. In this case, nl(r) and 
n2(R) take on even integral values. Then define 

(4.12) 

From this definition and equations (3.31)-(3.33), we find 

1- 

v[N, M ]  = 4 1 N ( r )  . vR(r - r ’ )  
r.r’ 

+ 2i 1 N ( r ) .  VI(r - R ) M ( R )  

+$ 1 M ( R ) .  vR(R-R’)[ xo xo 1. M(R’) .  (4.13) 

r, R 

x;-x: . 2 x 1  
- 1  - 

* 2x1 
R,R’ 

-1- - 
xo xo 
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The self-duality and criticality condition for this model is once again equation (4.9). 
Once more the duality statement is simple representable by an interchange of N and 
M. In this critical domain, one can rewrite equation (4.13) in a form exactly parallel to 
that of equation (4.11) by using instead of (4.10) the parametrisation: 

XI = 2 tan U' 
2 

X , = -  
cos U' 

(4.14) 

which will once again ensure the satisfaction of equation (4.10). In this critical 
domain, 

V [ N ,  M I  = + I N(r)VR(r  - r' )  e- 'u ' l~( r ' )  
. -  

r,r' 

4.3. Correlation functions for the Ising model 

Equation (2.12a) shows that in the Ising model a non-zero magnetic field generates 
terms with odd n. If there were no magnetic field, then only terms with even n would 
appear. Thus observation translates into a simple rule for calculating a multiple spin 
correlation function. Let us represent the Ising model in the standard way with 
c ( r ) =  i l ,  being the possible values of the on-site variable. Then according to 
equation (2.12) a coupling 

c 4 r ) h  ( r )  
r 

translates into a vertex function 

with 

2 cosh h ( r )  
-2 sinh h ( r )  

for n ( r )  even 
for n ( r )  odd. 

eY(h(r).n(r))  = (4.16) 

On one hand, we can calculate the multiple spin correlation function containing L 
spins as 

(4.17) 

where Z [ h ]  is the partition function in the presence of a magnetic field. But, notice 
that equation (4.16) states 

- a eY(h.n) 0 for n even 
ah I h = O =  { -1 for n odd. 

Consequently, we find that 

(4.18) 
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Here 2 is the partition function defined by equations (4.2) and (4.3) and 2‘ is the 
corresponding partition function defined with some of the N-values displaced by 
half-integral values, (Remember that n odd implies N half-integral for the Ising 
model.) In particular 

(4.19) 

(4.20) 

This result can be generalised one step further. Recall that in the two-dimensional 
Ising model there exists a variable dual to ~ ( r )  called p(R) (Kadanoff and Ceva 
1971). 

Define a correlation function involving L - m ( r )  variables and I dual p ( R )  vari- 
ables as 

(4.21) 

Because of the dual relation between N and M a natural definition of such a 
correlation function is to replace (4.18) by 

with 

(4.22) 

(4.23) 

This definition of a U - p correlation function is precisely equivalent to the standard 
definition. 
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